EF - DI
CCO-D1, pinygotowamic do Kalolavicu 1.
ME - DU
Przygotowanie do kolokwium z liczb zespolonych i macierzy

1. Wyanaenge frosfaci fryponometryesng, uyliedmiag liaby z
a) $z=2+2 i$
b) $z=1-\sqrt{3} i$
c) $\begin{array}{ll}z=-1+\sqrt{3} i & \text { ol }\end{array}=-\sqrt{3}-i$
2. Wry2macryc' fustac tryponomet nyerng, rogretapmicis, algebracierno, (tj.z=a+bi) hierby z
a) $z=\left(\frac{2+2 i}{1-\sqrt{3} i}\right)$
b) $z=\left(\frac{2+2 i}{1-\sqrt{3} i}\right)^{10}$
3. Wry2n acryc' wisysthie prerw'a sthe' stopuia n livby z ifrodaci $i^{\text {ch }}$ interpretacig geo metryeeng
a) $z=i$
$n=3$
b) $z=i$
e) $z=1+i, n=3$
c) $z=1, \quad n=3$
f) $z=\frac{2+2 i}{1-\sqrt{3} i}, x=3$
d) $z=1, \quad x=4$
4.* Korastajp ze wone de Moivréa sryprowadze' zrair na
a) $\quad \sin 2 \alpha, \quad \cos 2 \alpha$
b) $\sin 3 \alpha, \cos 3 \alpha$
c) $* * * \sin (n \alpha), \cos (n \alpha)$
4. Dla jäkich wartosi parametru me macien

$$
A=\left[\begin{array}{cc}
m & 1 \\
-12,5 & m+1
\end{array}\right]
$$

jest nièosobliva
6. Wyanaeryc' liaby $x \in \mathbb{R}$, alla letoingeh speiniona jèt nie rórnoic'

$$
\operatorname{det} A \geqslant 0
$$

golave

$$
A=\left[\begin{array}{ccc}
x+2 & 1 & 2 \\
2 x-2 & x-1 & -1 \\
3 x & x & x+2
\end{array}\right]
$$

7. Obliayci mymacrick macieny X speemiagpey rómos'ć

$$
A^{-1} X A=B+2 A^{T}
$$

gohie

$$
B=\left[\begin{array}{ccc}
-2 & 1 & -1 \\
0 & -1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

Wskarórke. Skonystaci a tureirokenc'a Cruchy'épo.
8. Obliaye $\sqrt{-3+4 i}$
g. Rozuipzae róunamie

$$
z^{3}-(2+2 i) z^{2}+(14+15 i) z-13-13 i=0
$$

10. Eblicryci mpmacunik macieny \bar{X} wiodso', de

$$
A^{-1} \underline{X} A=B^{T}
$$

oraz $\operatorname{det} B=3$, natonniast A jet daroky macing odurecalup.
11.* Obliongi mzmacrinte maciory X_{-} ziedzpe, zé

$$
A \cdot X \cdot A^{-1}=2 \cdot B^{T}
$$

gokie A, B se macienaui kwadratonymi stepnia on takinui, ie $\operatorname{det} A \neq 0 \quad$ oran $\operatorname{det} B=3$
12. Eblinge' X^{3}, gohie

$$
A^{-1} X A=B
$$

pry uym

$$
B=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right], \quad A=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

WSkarórka. Wyzmacyi macier X i nylearac,$\overline{i e} \quad X^{n}=A B^{n} A^{-1}$. Skonystac' z frompisey 'wearrace oha $n=3$ obtionaje B^{3} oras A^{-1}.

13*. Wranaczyc macier $X \in M_{2 \times 2}(\mathbb{R})$ 2 rórnamia

$$
A X^{-1} A=A^{2}
$$

Gohie $A \in M_{2 \times 2}(\mathbb{R})$ jest dowolnce maciène odurecahe shopuia 2-go.
14. Wy2naayci macion $X \in M_{2 \times 2}(\mathbb{R})$ z rósmomía

$$
\left[\begin{array}{cc}
5 & 6 \\
-4 & -5
\end{array}\right] \cdot X^{-1} \cdot\left[\begin{array}{cc}
5 & 6 \\
-4 & -5
\end{array}\right]=-\left[\begin{array}{cc}
5 & 6 \\
-4 & -5
\end{array}\right]^{2}
$$

Wiskandorka. Lauwaiyc', ie nóundxie jutposteci

$$
A X^{-1} A=-A^{2}
$$

oras $\operatorname{det} A \neq 0$.
15. Rouripzaci ueñod nownan deriema metodami: stosujpe arory Eramera oran saplonysfuje macien odrrof me:

$$
\left\{\begin{array}{l}
x+2 y+6 z=-1 \\
2 x-y=0 \\
3 x-y+2 z=-1
\end{array}\right.
$$

16. La fromocg twerdzenia Jaromeckere-lapelligpo sprarrdxicitiè uleiad rómañ himiougeh pert misppreeny. $J_{i s} b_{i}$ tak, noumipzae' seliad ro'unowaziny dineme metodaxu'. stoseype wory Crameta oraz zyleonyet ujp maciore odurotmog

$$
\left\{\begin{aligned}
x-2 y+z-t & =1 \\
-3 x+6 y-2 z+5 t & =-2 \\
-2 x+4 y-z+4 t & =-1
\end{aligned}\right.
$$

b) $\left\{\begin{aligned} x+y-3 z & =-1 \\ -2 x+3 y-2 z & =0 \\ -3 x+2 y+z & =1\end{aligned}\right.$
17. Rozwipzac mirómoic'

$$
\left|\begin{array}{cccc}
-1 & 1 & 0 & 1 \\
3 & 0 & x & 1 \\
5 & -2 & 0 & x-1 \\
5 & -1 & x-1 & x
\end{array}\right| \leqslant 2 x
$$

18. Rozurpzaci ukēad nórnañ w rakinoic' od wartain fonametrue $m \in \mathbb{R}$:

$$
\left\{\begin{aligned}
m x+y+z & =1 \\
x+m y+z & =m \\
x+y+m z & =m^{2}
\end{aligned}\right.
$$

19. Vy2nacryc' macier $\bar{X}^{-} z$ soúnanik

$$
\left[\begin{array}{cc}
3 & 4 \\
-2 & -3
\end{array}\right]-3 I+\left[\begin{array}{cc}
3 & 4 \\
-2 & -3
\end{array}\right]^{2}+\left[\begin{array}{cc}
3 & 4 \\
-2 & -3
\end{array}\right] X^{\top}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \cdot\left[\begin{array}{c}
3 \\
-1
\end{array}\right]^{\top}
$$

20. Wyanacyic macier X 2 roúrnamia

$$
\left(X \cdot\left[\begin{array}{ll}
2 & 1
\end{array}\right]^{\top} \cdot\left[\begin{array}{ll}
3 & 2
\end{array}\right]-2\left[\begin{array}{cc}
0 & -1 \\
3 & 2
\end{array}\right]\right)^{\top}-3 I=\left[\begin{array}{cc}
-1 & 2 \\
3 & 1
\end{array}\right] X^{\top}
$$

21. Zap/anía $18-26 \approx$ listy zadon na oceng bolb 2 liab respolougal.
22. Wyanacryi macier $\bar{X} z$ równanía
a) $\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right] \cdot X=\left[\begin{array}{cc}4 & -6 \\ 2 & 1\end{array}\right]$
b) $\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right] \cdot X=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]$
c) $\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right] \cdot X \cdot\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}4 & -6 \\ 2 & 1\end{array}\right]$
d) $\left[\begin{array}{cc}2 & 5 \\ 1 & 3\end{array}\right] \cdot \bar{X} \cdot\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
e) $\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right] \cdot \bar{X} \cdot\left[\begin{array}{ccc}1 & -2 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1\end{array}\right]$
23. Golioyc' symmacunte stepmia $n>2$

$$
\left|\begin{array}{cccc}
1+x_{1} y_{1} & 1+x_{1} y_{2} & \cdots & 1+x_{1} y_{n} \\
1+x_{2} y_{1} & 1+x_{2} y_{2} & \cdots & 1+x_{m} y_{n} \\
\cdots \cdots & \cdots & \cdots & \cdots
\end{array}\right|
$$

Wskaroirko. Np. Odjeg ostatmi wiess od pozostainch. 2 kedejnych wiersiy syiosayc pned Lyzuacrwht wispoing cymmita.
25. Rozwigzac' róunamie
a) $x^{4}+6 x^{3}+9 x^{2}+100=0$
wisk. Predsfewic $x^{4}+6 x^{3}+9 x^{2}$ jobleo kwadract pearny sumy.
b) $(2+i) x^{2}-(5-i) x+(2-2 i)=0$
26. Wiyznaryi $\lambda \in \mathbb{R} z$ róuna wia

$$
\operatorname{det}(A-\lambda I)=0,
$$

gokse I jut macreng je olnostleows oraz
a) $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right] \quad$ Odp. $\lambda \in\{0,7\}$
b) $A=\left[\begin{array}{ccc}3 & 2 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$ odp. $\lambda \in\{-1,3 \pm \sqrt{3}\}$
27. Wiyznacuyi $\lambda \in \mathbb{C}$ speèmiájpce mórnamie

$$
\operatorname{det}(A-\lambda I)=0,
$$

gobre

$$
A=\left[\begin{array}{cc}
2 & -1 \\
5 & 6
\end{array}\right], \quad I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

UWAGA. Lialez λ speè níajeg rómane $\operatorname{det}(A-\lambda I)=0$ nasywamy vartosíg wiasno maciery A.
28. Dla jafich prarametro'w $a, b \in \mathbb{R}$ maciok

$$
A=\left[\begin{array}{ccc}
1 & a & b \\
1 & a+1 & b \\
1 & a & b+1
\end{array}\right]
$$

jert miasoblinga?
29. Obliayi $\left|\begin{array}{ccc}1 & \cos x & \cos x \\ \cos x & 1 & \cos 2 x \\ \cos x & \cos 2 x & 1\end{array}\right|$

Wiskanórlea. Moima unkorkstaci wory:

$$
\text { - } \quad \begin{aligned}
\cos ^{2} x & +\sin ^{2} x=1 \\
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =2 \cos ^{2} x-1 \\
& =1-2 \sin ^{2} x
\end{aligned}
$$

30. Rozw'praci utaiad róunañ storijp uror rameta.
a) $\left\{\begin{array}{l}(2-3 i) z_{1}+(7+i) z_{2}=18-3 i \\ (5+4 i) z_{1}-3 i z_{2}=-7-i \quad \frac{\text { Odp. }}{z_{1}=i, z_{2}=2-i}\end{array}\right.$
b) $\left\{\begin{array}{l}(1+i) z_{1}+(2-i) z_{2}=2-2 i \\ (1-i) z_{1}-(3+i) z_{2}=-3+3 i\end{array}\right.$ oolp_ $z_{1}=2+i$ $z_{2}=\frac{7}{5}-\frac{9}{5} i$
31. Wrymaeryc' $z \in \mathbb{C} 2$ roundania

$$
\left|\begin{array}{ll}
(2-i \sqrt{2}) z & i \\
5 i z-2 i+\sqrt{2} & z
\end{array}\right|=0
$$

Odp, ${ }^{z} \in\left\{\frac{1}{3}+\frac{i \sqrt{2}}{6} ;-2-i \sqrt{2}\right\}$
32. Dla jákich wartos'a fuarametric a ukīad róunas̀s gest cremeroushi?
a) $\left\{\begin{array}{l}2 x+a y+z=0 \\ x-a y-2 z=0 \\ x+2 y+z=0\end{array} \quad\right.$ odp, $a \neq \frac{5}{2}$
b) $\left\{\begin{array}{l}a x+y+z=1 \\ x+a y+z=a \\ x+y+a z=a^{2}\end{array} \quad\right.$ Odp, $a \neq-2$ naf1
32. I 2ateinosic' od wartosa' $k \in \mathbb{R}$ abadaci rouni̧zalno'c' ukēadu roimañ. Tprypadiue nozu's zaluosic Inaloic' wrusthice rocopranch
a) $\int 2 x+3 y=4$
a) $\{k x+(2 k-2) y=8$

$$
[(k+2) x+9 y=3 k
$$

b) $\left\{\begin{array}{l}2 x_{1}-x_{2}+3 x_{3}=k \\ 3 x_{1}+x_{2}-5 x_{3}=0 \\ 4 x_{1}-x_{2}+x_{3}=k \\ x_{1}+k x_{2}-13 x_{3}=-6\end{array}\right.$

Odp Goly $k=4$,

$$
\left\{\begin{array}{l}
x=t \\
y=\frac{2}{3}(2-t), \quad t \in \mathbb{R}
\end{array}\right.
$$

Oop Gdy $k=3$,

$$
x_{1}=1, x_{2}=2, x_{3}=1
$$

c) $\left\{\begin{array}{cl}x_{1}-x_{2}+2 x_{3} & =k \\ -3 x_{1}+3 x_{2}-x_{3}+x_{4} & =-3 k \\ x_{1}+4 x_{3}+4 x_{4} & =0\end{array}\right.$

Oop, Gdy $k=1, \quad x_{1}=\frac{24}{5} t, \quad x_{2}=\frac{22}{5} t-1$,

$$
x_{3}=-\frac{1}{5} t, \quad x_{4}=t, \quad t \in \mathbb{R}
$$

Goly $k \neq 1$ wiad spreceny
33. Konystajge $=$ twerdzem'a Knomeckera-Capeli' epo zbadac' rousip $2 a l m b i$ vecadow rowmañ. W pypackee rown'pzalroori inaloe'c' visupstlice rourí2ania.
a) $\left\{\begin{aligned} x_{1}+x_{2}+x_{3} & =0 \\ 2 x_{1}-x_{2}-x_{3} & =-3 \\ x_{1}-x_{2}+x_{3} & =0 \\ 2 x_{1}+2 x_{3} & =0\end{aligned} \quad\right.$ odp. $x_{1}=-1, x_{2}-0, x_{3}=1$
6) $\left\{\begin{aligned} x_{1}-x_{2}+2 x_{3} & =1 \quad \text { od, } x_{1}=\frac{24}{5} t, \\ -3 x_{1}+3 x_{2}-x_{3}+x_{4} & =-3 \quad \\ x_{1}+4 x_{3}-4 x_{4} & =0 \quad \begin{array}{l}x_{2}=\frac{22}{5} t-1 \\ x_{3}=-\frac{1}{5} t, x_{4}=t, \\ t \in \mathbb{R} .\end{array}\end{aligned}\right.$
34. Stosnjec prodstawore tuserdizenia o upz-

a) $\left|\begin{array}{ccc}202 & 44 & 122 \\ 250 & 55 & 153 \\ 50 & 11 & 31\end{array}\right| \quad$ odp. 44

WלK. Np: Z drugiej kohumny untouye' 11, poteue do 10 kolumny dodajeung 2° pomnoriong freer -50, a do 3° drugg pomnozioup puer -30
b) $\left|\begin{array}{ccc}27 & 9 & 9 \\ 62 & 23 & 18 \\ 35 & 14 & 7\end{array}\right|$ Odp. - 126

Wisk. Od dnyprepo mèrna oolyjuyeny suny frososfactyce, itd... (urryipcyc'9 210 miersza, $2 x$ drugiegow. 7230 insthe)

$$
\text { c) } \left.W=\left\lvert\, \begin{array}{ccc}
1 & a & a^{2} \\
a & a^{2} & 1 \\
a^{2} & 1 & a
\end{array}\right.\right] \text {, gokie } a=-\frac{1}{2}(1-i \sqrt{3})
$$

Odp, O
Wskaro'rka. Sproudirí, 2e $W=-\left(a^{3}-1\right)^{2}$, protem oblinge' a^{3} трриanajן c porkec'
sp: Arypomometnjenn likeby a
2 stinciec woit de Moivre'a
$\left(t j \cdot(\cos \varphi+i \sin \varphi)^{n}=\cos (n \varphi)+i \sin (n \varphi)\right)$.

